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• “Communications Toolbox Product Description” on page 1-2
• “Configure Simulink Environment for Communications Models” on page 1-3
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Communications Toolbox Product Description
Design and simulate the physical layer of communications systems

Communications Toolbox provides algorithms and apps for the analysis, design, end-to-end
simulation, and verification of communications systems. Toolbox algorithms including channel coding,
modulation, MIMO, and OFDM enable you to compose and simulate a physical layer model of your
standard-based or custom-designed wireless communications system.

The toolbox provides a waveform generator app, constellation and eye diagrams, bit-error-rate, and
other analysis tools and scopes for validating your designs. These tools enable you to generate and
analyze signals, visualize channel characteristics, and obtain performance metrics such as error
vector magnitude (EVM). The toolbox includes SISO and MIMO statistical and spatial channel
models. Channel profile options include Rayleigh, Rician, and WINNER II models. It also includes RF
impairments, including RF nonlinearity and carrier offset and compensation algorithms, including
carrier and symbol timing synchronizers. These algorithms enable you to realistically model link-level
specifications and compensate for the effects of channel degradations.

Using Communications Toolbox with RF instruments or hardware support packages, you can connect
your transmitter and receiver models to radio devices and verify your designs with over-the-air
testing.

Key Features
• Algorithms for designing the physical layer of standard-based or custom-designed communications

systems
• Waveform Generator app and analysis tools and measurement scopes, including a bit-error-rate

app, constellation diagrams, and eye diagrams
• Channel models, including AWGN, multipath Rayleigh fading, Rician fading, MIMO multipath

fading, and WINNER II spatial
• RF impairment models, including nonlinearity, phase noise, I/Q imbalance, thermal noise, and

phase and frequency offsets
• Receiver components, including AGC, I/Q imbalance correction, DC blocking, and timing and

carrier synchronization
• Hardware support packages for connecting waveforms to radio devices and verifying designs with

over-the-air testing
• GPU-enabled algorithms for computationally intensive algorithms such as Turbo, LDPC, and

Viterbi decoders

1 Introduction
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Configure Simulink Environment for Communications Models

Communications Toolbox Simulink Model Template
The Communications Toolbox Simulink model template lets you automatically configure the Simulink
environment with the recommended settings for communications modeling. Communications Toolbox
Simulink model templates enable reuse of settings, including configuration parameters. The model
you create from the template uses best practices and takes advantage of previous solutions to
common problems which helps you get started more quickly.

For more information on Simulink model templates, see “Build and Edit a Model Interactively”
(Simulink).

Create Model Using the Communications Toolbox Simulink Model Template

To create a new blank model and open the library browser:

1 On the MATLAB® Home tab, click Simulink, and choose the Communications model template.
2 Click Create Model to create an empty model with settings suitable for use with

Communications Toolbox. The new model opens. To access the library browser, click the Library
Browser button on the model toolbar.

The new model using the template settings and contents appears in the Simulink Editor. The model is
only in memory until you save it.

 Configure Simulink Environment for Communications Models
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Communications Toolbox Simulink Model Template

When you create a model by choosing the Communications Toolbox Simulink model template, the
model is configured to use the settings recommended for communications modeling. Some of these
settings are:

Configuration Parameter Setting
'SingleTaskRateTransMsg' 'error'
'Solver' 'VariableStepDiscrete'
'EnableMultiTasking' 'Off'
'MaxStep' 'auto'
'StartTime' '0.0'
'StopTime' 'inf'
'FixedStep' 'auto'
'SaveTime' 'off'
'SaveOutput' 'off'
'AlgebraicLoopMsg' 'error'
'RTWInlineParameters' 'on'
'BooleanDataType' 'off'
'UnnecessaryDatatypeConvMsg' 'none'
'LocalBlockOutputs' 'off'

Block Characteristics
You can type showcommblockdatatypetable at the MATLAB command line to generate a table
showing characteristics of Simulink blocks in Communications Toolbox.

Access Communications Toolbox Block Library
You can access the main Communications Toolbox block library by entering commlib at the MATLAB
command line.

1 Introduction
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Alternatively, to view the block libraries for the products you have installed, you can select the 
from the Library tab in a model window.

 Configure Simulink Environment for Communications Models
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.

The left pane displays the installed products, each of which has its own library of blocks. To view the
contents of a library in the right pane, select a product library in the left pane.

To Workspace Block Configuration for Communications System
Simulations
When simulating a communications system and saving signals to the MATLAB workspace, configure
the To Workspace block to save sample values as a 2-D array. To load the block preconfigured with the
Save format set to Array and Save 2-D signals set to 2-D array, select the version in the DSP
System Toolbox™ / Sinks sublibrary.

1 Introduction
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With these settings the output at each time step is concatenated along the first dimension. The first
dimension of the array aligns with time such that simout(1,:) returns the first logged signal value.
The output array contains only signal values and does not contain time data.

See Also
Functions
showcommblockdatatypetable

Blocks
To Workspace

Related Examples
• Why Simulink for Wireless System Design
• “Build and Edit a Model Interactively” (Simulink)

 Configure Simulink Environment for Communications Models
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System Simulation

• “Examine 256-QAM Using Simulink” on page 2-2
• “Compute BER for QAM System with AWGN Using MATLAB” on page 2-7
• “Examine 16-QAM Using MATLAB” on page 2-8
• “Use Pulse Shaping on 16-QAM Signal” on page 2-14
• “Use Forward Error Correction on 16-QAM Signal” on page 2-21
• “OFDM Modulation Using MATLAB” on page 2-24
• “Introduction to OFDM” on page 2-26
• “Basic OFDM with No Cyclic Prefix” on page 2-31
• “Equalization, Convolution, and Cyclic Prefix Addition” on page 2-33
• “OFDM and Equalization with Prepended Cyclic Prefix” on page 2-37
• “OFDM with FFT Based Oversampling” on page 2-39
• “QPSK and OFDM with MATLAB System Objects” on page 2-42
• “Accelerating BER Simulations Using the Parallel Computing Toolbox” on page 2-45
• “Iterative Design Workflow for Communication Systems” on page 2-48
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Examine 256-QAM Using Simulink

This example shows you how to model a communications system with quadrature amplitude
modulation (QAM), additive white Gaussian noise (AWGN) channel, and phase noise using Simulink®.
The model displays constellation diagrams of the 256-QAM signal and performs error rate
computations.

Overview

The cm_commphasenoise model, simulates the effect of AWGN and phase noise on a 256-QAM
signal. The Simulink model is a graphical representation for a mathematical model of a
communications system that generates a random signal, modulates it using QAM, adds AWGN and
phase noise to the signal, and demodulates the signal. The model also contains blocks to display the
bit error rate and constellation diagrams of the modulated signal.

• The Bernoulli Binary Generator block generates a signal consisting of a sequence of 8-bit binary
values in the range [0, 255].

• The Rectangular QAM Modulator Baseband block modulates the signal using baseband 256-ary
QAM.

• The AWGN Channel block models a noisy channel by adding white Gaussian noise to the
modulated signal.

• The Phase Noise block introduces noise in the angle of its complex input signal.
• The Rectangular QAM Demodulator Baseband block demodulates the signal.

Additional blocks in the model can help you interpret the simulation.

• The Constellation Diagram block displays constellation diagrams of the signal with AWGN and
phase noise added.

• The Error Rate Calculation block counts bits that differ between the received signal and
transmitted signal.

• The To Workspace block, labeled outputErr, outputs the results to the workspace for use when
plotting the results. The Display BER Plot block opens a bit error rate (BER) plot showing the
Eb/N0 performance curves for 256-QAM transmission and reception at various levels of phase
noise.

2 System Simulation

2-2



Digital Modulation

The model simulates QAM, which is a method for converting a digital signal to a complex signal. The
model modulates the signal onto a sequence of complex numbers that lie on a lattice of points in the
complex plane, known as the constellation of the signal. A plot of these points is called a scatterplot
or constellation diagram of the signal.

The constellation diagram shown here displays the baseband 256-ary QAM with AWGN added and
with AWGN and phase noise added. The points in the constellation diagram do not lie exactly on the
constellation shown in the figure because of the added noise. Phase noise alters the angle of the
complex modulated signal, causing a radial displacement of constellation points.

 Examine 256-QAM Using Simulink
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Run the Simulation

The default model configuration has the run duration set to inf. The Error Rate Calculation block is
configured to run until 100 errors occur. To stop the simulation before 100 errors occur, click Stop on
the Simulation tab.

Display the Error Rate

The Display block displays the number of errors introduced by the AWGN channel and phase noise.
When you run the simulation, three small boxes appear in the block, displaying the vector output
from the Error Rate Calculation block.

• The first entry is the BER.
• The second entry is the total number of errors.
• The third entry is the total number of comparisons made.

Display a Phase Noise Plot

To display a figure that plots simulation results of BER versus Eb/N0 curves for a range of phase
noise settings, double-click the Display BER Plot block in the model.

Further Exploration

You can control the way a Simulink block functions by setting its parameters. To view or change
simulation parameters, double-click a block to open its block mask.

To change the amount of phase noise, open the Phase Noise block mask and enter a new value for the
Phase noise level (dBc/Hz) parameter. Click OK to apply the new setting.

2 System Simulation
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To change the amount of noise, open the AWGN Channel block mask and enter a new value for the
Eb/No (dB) parameter. Decreasing this parameter value increases the noise level. Click OK to apply
the new setting.

Reducing the phase noise and increasing the Eb/N0 removes noise from the model. Since the model is
configured to run until 100 errors occur, running the simulation with little noise in the model results
in a long simulation run time. To limit the maximum simulation run time, you can reduce the run
duration from inf to a small value, such as 10.

To produce new results, run the simulation using the modified settings.

Alternatively, you can enter a variable name in a parameter. Then at the MATLAB® command line set
the value for that variable in the workspace. Setting parameters in the Command Window can be
convenient if you need to run multiple simulations with different parameter values.

You can also use callback functions to configure your simulation. The default setting for several
parameters in this model are set using the PreLoadFcn callback function. To access the callback
functions, select Model Settings > Model Properties on the Modeling tab. In the Model
Properties dialog, select the Callbacks tab. For more information on model properties and callback
functions, see “Model Callbacks” (Simulink).

Plot BER at Different Noise Levels

The plot_256qam_ber_curves.m MATLAB® program file generated this BER plot by running
multiple simulations with different values for the Phase noise level (dBc/Hz) and Eb/No (dB)
parameters. Each curve is a plot of BER as a function of signal to noise ratio for a fixed amount of
phase noise. For each plotted BER point, the simulation stopped when 1000 bit errors were reached
or 1e8 bits were compared. Results vary from run to run due to the random nature of the input signal
and simulation impairments.

 Examine 256-QAM Using Simulink
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See Also

Related Examples
• “Passband Modulation”
• “Configure Simulink Environment for Communications Models” on page 1-3

2 System Simulation
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Compute BER for QAM System with AWGN Using MATLAB
Communications Toolbox features build upon the MATLAB computational and visualization tools,
enabling you to use higher level functions when simulating communications systems. This set of
examples shows how to compute the bit error rate (BER) on a 16-QAM signal distorted by an AWGN
channel.

• “Examine 16-QAM Using MATLAB” on page 2-8 — Shows a basic 16-QAM communications link
• “Use Pulse Shaping on 16-QAM Signal” on page 2-14 — Extends the basic 16-QAM

communications link example to include pulse shape filtering
• “Use Forward Error Correction on 16-QAM Signal” on page 2-21 — Extends the 16-QAM

communications link with pulse shaping example to include forward error correction (FEC)

 Compute BER for QAM System with AWGN Using MATLAB
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Examine 16-QAM Using MATLAB

This example shows how to process a data stream by using a communications link that consists of a
baseband modulator, channel, and demodulator. The example displays a portion of the random data in
a stem plot, displays the transmitted and received signals in constellation diagrams, and computes
the bit error rate (BER). To add a pulse shaping filter to the communications link, see the “Use Pulse
Shaping on 16-QAM Signal” on page 2-14 example. To add forward error correction to the
communications link with pulse shape filtering, see the “Use Forward Error Correction on 16-QAM
Signal” on page 2-21 example.

Modulate Random Signal

The modulation scheme uses baseband 16-QAM, and the signal passes through an additive white
Gaussian noise (AWGN) channel. The basic simulation operations use these Communications
Toolbox™ and MATLAB® functions.

• rng — Controls the random number generation
• randi — Generates a random data stream
• bit2int — Converts the binary data to integer-valued symbols
• qammod — Modulates using 16-QAM
• comm.AWGNChannel — Impairs the transmitted data using AWGN
• scatterplot — Creates constellation diagrams
• qamdemod — Demodulates using 16-QAM
• int2bit — Converts the integer-valued symbols to binary data
• biterr — Computes the system BER

Generate Random Binary Data Stream

The conventional format for representing a signal in MATLAB is a vector or matrix. The randi
function creates a column vector containing the values of a binary data stream. The length of the
binary data stream (that is, the number of rows in the column vector) is arbitrarily set to 30,000.

Define parameters.

M = 16;      % Modulation order (alphabet size or number of points in signal constellation)
k = log2(M); % Number of bits per symbol
n = 30000;   % Number of bits to process
sps = 1;     % Number of samples per symbol (oversampling factor)

Set the rng function to its default state, or any static seed value, so that the example produces
repeatable results. Then use the randi function to generate random binary data.

rng default;
dataIn = randi([0 1],n,1); % Generate vector of binary data

Use a stem plot to show the binary values for the first 40 bits of the random binary data stream. Use
the colon (:) operator in the call to the stem function to select a portion of the binary vector.

stem(dataIn(1:40),'filled');
title('Random Bits');
xlabel('Bit Index');
ylabel('Binary Value');

2 System Simulation
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Convert Binary Data to Integer-Valued Symbols

The default configuration for the qammod function expects integer-valued data as the input symbols to
modulate. In this example, the binary data stream is preprocessed into integer values before using
the qammod function. In particular, the bit2int function converts each 4-tuple to a corresponding
integer in the range [0, (M–1)]. The modulation order, M, is 16 in this example.

Perform a bit-to-symbol mapping by determining the number of bits per symbol defined by
k = log2(M). Then, use the bit2int function to convert each 4-tuple to an integer value.

dataSymbolsIn = bit2int(dataIn,k);

Plot the first 10 symbols in a stem plot.

figure;                    % Create new figure window.
stem(dataSymbolsIn(1:10));
title('Random Symbols');
xlabel('Symbol Index');
ylabel('Integer Value');

 Examine 16-QAM Using MATLAB
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Modulate Using 16-QAM

Use the qammod function to apply 16-QAM modulation with phase offset of zero to the
dataSymbolsIn column vector for binary-encoded and Gray-encoded bit-to-symbol mappings.

dataMod = qammod(dataSymbolsIn,M,'bin'); % Binary-encoded
dataModG = qammod(dataSymbolsIn,M);      % Gray-encoded

The modulation operation outputs complex column vectors containing values that are elements of the
16-QAM signal constellation. Later in this example constellation diagrams show the binary and Gray
symbol mapping.

For more information on modulation functions, see “Digital Baseband Modulation”. For an example
that uses Gray coding with phase-shift keying (PSK) modulation, see “Symbol Mapping Examples”.

Add White Gaussian Noise

The modulated signal passes through the channel by using the awgn function with the specified
signal-to-noise ratio (SNR). Convert the ratio of energy per bit to noise power spectral density
(Eb/N0) to an SNR value for use by the awgn function. The sps variable is not significant in this
example but makes extending the example to use pulse shaping easier. For more information, see the
“Use Pulse Shaping on 16-QAM Signal” on page 2-14 example.

Calculate the SNR when the channel has an Eb/N0 of 10 dB.

EbNo = 10;
snr = EbNo+10*log10(k)-10*log10(sps);

2 System Simulation
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Pass the signal through the AWGN channel for the binary and Gray coded symbol mappings.

receivedSignal = awgn(dataMod,snr,'measured');
receivedSignalG = awgn(dataModG,snr,'measured');

Create Constellation Diagram

Use the scatterplot function to display the in-phase and quadrature components of the modulated
signal, dataMod, and the noisy signal received after the channel. The effects of AWGN are present in
the constellation diagram.

sPlotFig = scatterplot(receivedSignal,1,0,'g.');
hold on
scatterplot(dataMod,1,0,'k*',sPlotFig)

Demodulate 16-QAM

Use the qamdemod function to demodulate the received data and output integer-valued data symbols.

dataSymbolsOut = qamdemod(receivedSignal,M,'bin'); % Binary-encoded data symbols
dataSymbolsOutG = qamdemod(receivedSignalG,M);     % Gray-coded data symbols

Convert Integer-Valued Symbols to Binary Data

Use the int2bit function to convert the binary-encoded data symbols from the QAM demodulator into
a binary vector with Nsym × Nbits/sym  length. Nsym is the total number of QAM symbols, and
Nbits/sym is the number of bits per symbol. For 16-QAM, Nbits/sym = 4. Repeat the process for the
Gray-encoded symbols.

 Examine 16-QAM Using MATLAB
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Reverse the bit-to-symbol mapping performed earlier in this example.

dataOut = int2bit(dataSymbolsOut,k);
dataOutG = int2bit(dataSymbolsOutG,k);

Compute System BER

The biterr function calculates the bit error statistics from the original binary data stream, dataIn,
and the received data streams, dataOut and dataOutG. Gray coding significantly reduces the BER.

Use the error rate function to compute the error statistics. Use the fprintf function to display the
results.

[numErrors,ber] = biterr(dataIn,dataOut);
fprintf('\nThe binary coding bit error rate is %5.2e, based on %d errors.\n', ...
    ber,numErrors)

The binary coding bit error rate is 2.27e-03, based on 68 errors.

[numErrorsG,berG] = biterr(dataIn,dataOutG);
fprintf('\nThe Gray coding bit error rate is %5.2e, based on %d errors.\n', ...
    berG,numErrorsG)

The Gray coding bit error rate is 1.63e-03, based on 49 errors.

Plot Signal Constellations

The constellation diagram shown previously plotted the points in the QAM constellation, but it did not
indicate the mapping between symbol values and the constellation points. In this section, the
constellation diagram indicates the mappings for binary-encoding and Gray-encoding of data to
constellation points.

Show Natural and Gray Coded Binary Symbol Mapping for 16-QAM Constellation

Apply 16-QAM modulation to complete sets of constellation points by using binary-coded symbol
mapping and Gray-coded symbol mapping.

M = 16;                       % Modulation order
x = (0:15);                   % Integer input
symbin = qammod(x,M,'bin');   % 16-QAM output (binary-coded)
symgray = qammod(x,M,'gray'); % 16-QAM output (Gray-coded)

Use the scatterplot function to plot the constellation diagram and annotate it with binary (red)
and Gray (black) representations of the constellation points.

scatterplot(symgray,1,0,'b*');
for k = 1:M
    text(real(symgray(k)) - 0.0,imag(symgray(k)) + 0.3, ...
        dec2base(x(k),2,4));
     text(real(symgray(k)) - 0.5,imag(symgray(k)) + 0.3, ...
         num2str(x(k)));
    
    text(real(symbin(k)) - 0.0,imag(symbin(k)) - 0.3, ...
        dec2base(x(k),2,4),'Color',[1 0 0]);
    text(real(symbin(k)) - 0.5,imag(symbin(k)) - 0.3, ...
        num2str(x(k)),'Color',[1 0 0]);
end
title('16-QAM Symbol Mapping')
axis([-4 4 -4 4])

2 System Simulation
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Examine Plots

Using Gray-coded symbol mapping improves BER performance because the Gray-coded signal
constellation points differ by only one bit from each adjacent neighboring point. Where as with
binary-coded symbol mapping, some of the adjacent constellation points differ by two bits. For
example, the binary-coded values for 1 (0 0 0 1) and 2 (0 0 1 0) differ by two bits (the third and
fourth bits).

See Also

Related Examples
• “Compute BER for QAM System with AWGN Using MATLAB” on page 2-7

 Examine 16-QAM Using MATLAB
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Use Pulse Shaping on 16-QAM Signal

This example extends the “Examine 16-QAM Using MATLAB” on page 2-8 example to perform pulse
shaping and raised cosine filtering by using a pair of square-root raised cosine (RRC) filters. The
rcosdesign function creates the filters. BER performance can be improved by adding forward error
correction (FEC) to the communication link. To add FEC to the communications link with pulse shape
filtering example, see the “Use Forward Error Correction on 16-QAM Signal” on page 2-21 example.

This example shows how to process a binary data stream by using a communications link that
consists of a baseband modulator, channel, demodulator, and pulse shaping and raised cosine
filtering. The example computes the bit error rate (BER), displays filter effects in eye diagrams, and
displays the transmitted and received signals in a constellation diagram.

Establish Simulation Framework

Define simulation parameters for a 16-QAM modulation scheme with raised cosine filtering, and an
AWGN channel.

M = 16;            % Modulation order
k = log2(M);       % Bits per symbol
numBits = k*7.5e4; % Bits to process
sps = 4;           % Samples per symbol (oversampling factor)

Create RRC Filter

Set the RRC filter parameters.

filtlen = 10;      % Filter length in symbols
rolloff = 0.25;    % Filter rolloff factor

Use the rcosdesign function to create an RRC filter.

rrcFilter = rcosdesign(rolloff,filtlen,sps);

Use the FVTool to display the RRC filter impulse response.

fvtool(rrcFilter,'Analysis','Impulse')
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Compute System BER

Use the randi function to generate random binary data. Set the rng function to its default state, or
any static seed value, so that the example produces repeatable results.

rng default;                     % Use default random number generator
dataIn = randi([0 1],numBits,1); % Generate vector of binary data

Use the bit2int function to convert k-tuple binary words into integer symbols.

dataSymbolsIn = bit2int(dataIn,k);

Apply 16-QAM modulation using the qammod function.

dataMod = qammod(dataSymbolsIn,M);

Use the upfirdn function to upsample the signal by the oversampling factor and apply the RRC filter.
The upfirdn function pads the upsampled signal with zeros at the end to flush the filter. Then, the
function applies the filter.

txFiltSignal = upfirdn(dataMod,rrcFilter,sps,1);

Using the number of bits per symbol (k) and the number of samples per symbol (sps), convert the
ratio of energy per bit to noise power spectral density (EbNo) to an SNR value for use by the awgn
function.

EbNo = 10;
snr = EbNo + 10*log10(k) - 10*log10(sps);
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Pass the filtered signal through an AWGN channel.

rxSignal = awgn(txFiltSignal,snr,'measured');

Use the upfirdn function on the received signal to downsample and filter the signal. Downsample by
using the same oversampling factor applied for upsampling the transmitted signal. Filter by using the
same RRC filter applied to the transmitted signal.

Each filtering operation delays the signal by half of the filter length in symbols, filtlen/2. So, the
total delay from transmit and receive filtering equals the filter length, filtlen. For the BER
computation, the transmitted and received signals must be the same size and you must account for
the delay between the transmitted and received signal. Remove the first filtlen symbols in the
decimated signal to account for the cumulative delay of the transmit and receive filtering operations.
Remove the last filtlen symbols in the decimated signal to ensure the number of samples in the
demodulator output matches the number of samples in the modulator input.

rxFiltSignal = ...
    upfirdn(rxSignal,rrcFilter,1,sps);       % Downsample and filter
rxFiltSignal = ...
    rxFiltSignal(filtlen + 1:end - filtlen); % Account for delay

Use the qamdemod function to demodulate the received filtered signal.

dataSymbolsOut = qamdemod(rxFiltSignal,M);

Convert the recovered integer symbols into binary data by using the int2bit function.

dataOut = int2bit(dataSymbolsOut,k);

Determine the number of errors and the associated BER by using the biterr function.

[numErrors,ber] = biterr(dataIn,dataOut);
fprintf('\nFor an EbNo setting of %3.1f dB, the bit error rate is %5.2e, based on %d errors.\n', ...
    EbNo,ber,numErrors)

For an EbNo setting of 10.0 dB, the bit error rate is 1.79e-03, based on 538 errors.

Visualize Filter Effects

To visualize the filter effects in an eye diagram, reduce the Eb/N0 setting and regenerate the received
data. Visualizing a high SNR signal with no other multipath effects, you can use eye diagrams to
highlight the intersymbol interference (ISI) reduction at the output for the pair of pulse shaping RRC
filters. The RRC filter does not have zero-ISI until it is paired with the second RRC filter to form in
cascade a raised cosine filter.

EbNo = 20;
snr = EbNo + 10*log10(k) - 10*log10(sps);
rxSignal = awgn(txFiltSignal,snr,'measured');
rxFiltSignal = ...
    upfirdn(rxSignal,rrcFilter,1,sps);         % Downsample and filter
rxFiltSignal = ...
    rxFiltSignal(filtlen + 1:end - filtlen);   % Account for delay

Create an eye diagram for a portion of the filtered noiseless signal to visualize the effect of the pulse
shaping. The transmitted signal has RRC filtering and shows ISI as a narrowing of the eye-opening.

eyediagram(txFiltSignal(1:2000),sps*2);
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Displaying the eye diagram of the signal after the channel noise shows the signal with RRC filtering
and noise. The noise level causes further narrowing of the eye diagram eye-opening.

eyediagram(rxSignal(1:2000),sps*2);
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Displaying the eye diagram of the signal after the receive filtering is applied shows the signal with
raised cosine filtering. The wider eye diagram eye-openings, the signal has less ISI with raised cosine
filtering as compared to the signal with RRC filtering.

eyediagram(rxFiltSignal(1:2000),2);
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Create a constellation diagram of the received signal before and after filtering. Scale the received
signal by the square root of the number of samples per symbol to normalize the transmit and receive
power levels.

scatplot = scatterplot(sqrt(sps)*...
    rxSignal(1:sps*5e3),...
    sps,0);
hold on;
scatterplot(rxFiltSignal(1:5e3),1,0,'bx',scatplot);
title('Received Signal, Before and After Filtering');
legend('Before Filtering','After Filtering');
axis([-5 5 -5 5]); % Set axis ranges
hold off;
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See Also

Related Examples
• “Compute BER for QAM System with AWGN Using MATLAB” on page 2-7
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Use Forward Error Correction on 16-QAM Signal

This example extends the “Use Pulse Shaping on 16-QAM Signal” on page 2-14 example to show bit
error rate (BER) performance improvement when using forward error correction (FEC) coding.

This example shows how to process a binary data stream by using a communications link that
consists of a baseband modulator, channel, demodulator, pulse shaping, raised cosine filtering, and
error correction.

Establish Simulation Framework

In this example, to achieve a more accurate BER estimate, the number of bits to process is increased
from the value used in the “Use Pulse Shaping on 16-QAM Signal” on page 2-14 example. Other
simulation variables match the settings in that example.

Define simulation parameters for a 16-QAM modulation scheme with raised cosine filtering and an
AWGN channel.

M = 16;            % Modulation order
k = log2(M);       % Bits per symbol
numBits = k*2.5e5; % Total bits to process
sps = 4;           % Samples per symbol (oversampling factor)
filtlen = 10;      % Filter length in symbols
rolloff = 0.25;    % Filter rolloff factor

Generate Random Data

Set the rng function to its default state, or any static seed value, so that the example produces
repeatable results. Then, use the randi function to generate random binary data.

rng default;                     % Use default random number generator
dataIn = randi([0 1],numBits,1); % Generate vector of binary data

Apply Convolutional Encoding

To correct errors arising from the noisy channel, apply convolutional coding to the data before
transmission and Viterbi decoding to the received data. The decoder uses a hard decision algorithm,
which means each received data bit is interpreted as either 0 or 1.

Define a convolutional coding trellis for a rate 2/3 code by using the poly2trellis function. The
defined trellis represents the convolutional code that the convenc function uses for encoding the
binary vector, dataIn.

constrlen = [5 4];               % Code constraint length
genpoly = [23 35 0; 0 5 13]      % Generator polynomials

genpoly = 2×3

    23    35     0
     0     5    13

tPoly = poly2trellis(constrlen,genpoly);
codeRate = 2/3;

Encode the input data by using the tPoly trellis.
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dataEnc = convenc(dataIn,tPoly);

Modulate Data

Use the bit2int function to convert the k-tuple encoded binary data to an integer values.

dataSymbolsIn = bit2int(dataEnc,k);

Use the qammod function to apply 16-QAM modulation.

dataMod = qammod(dataSymbolsIn,M);

Apply Raised Cosine Filtering

Use the rcosdesign function to create an RRC filter.

rrcFilter = rcosdesign(rolloff,filtlen,sps);

Use the upfirdn function to upsample the signal by the oversampling factor and apply the RRC filter.
The upfirdn function pads the upsampled signal with zeros at the end to flush the filter. Then, the
function applies the filter.

txSignal = upfirdn(dataMod,rrcFilter,sps,1);

Apply AWGN Channel

Using the number of bits per symbol (k) and the number of samples per symbol (sps), convert the
ratio of energy per bit to noise power spectral density (EbNo) to an SNR value for use by the awgn
function. When converting the Eb/N0 to SNR, you must account for the number of information bits
per symbol. With no FEC applied, each symbol corresponded to k bits. With FEC applied, each symbol
corresponds to (k × codeRate) information bits. For the 2/3 code rate and 16-QAM transmissions
used in this example, three symbols correspond to 12 coded bits and 8 uncoded (information) bits.

EbNo = 10;
snr = EbNo+10*log10(k*codeRate)-10*log10(sps);

Pass the filtered signal through an AWGN channel.

rxSignal = awgn(txSignal,snr,'measured');

Receive and Demodulate Signal

Filter the received signal by using the RRC filter. Remove a portion of the signal to account for the
filter delay.

rxFiltSignal = ...
    upfirdn(rxSignal,rrcFilter,1,sps);       % Downsample and filter
rxFiltSignal = ...
    rxFiltSignal(filtlen + 1:end - filtlen); % Account for delay

Use the qamdemod function to demodulate the received filtered signal.

dataSymbolsOut = qamdemod(rxFiltSignal,M);

Apply Viterbi Decoding

Use the int2bit function to convert the recovered integer symbols into binary data.

codedDataOut = int2bit(dataSymbolsOut,k); % Return data in column vector
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Use the vitdec function, configured for hard decisions and continuous operation mode, to decode
the convolutionally encoded data. The continuous operation mode maintains the internal state when
the decoder is repeatedly invoked, such as when receiving frames of data operating in a loop. The
continuous operation mode also adds delay to the system. Although this example does not use a loop,
the 'cont' mode is used for the purpose of illustrating how to compensate for the delay in this
decoding operation.

traceBack = 16;                      % Decoding traceback length
numCodeWords = ...
    floor(length(codedDataOut)*2/3); % Number of complete codewords
dataOut = ...
    vitdec(codedDataOut(1:numCodeWords*3/2), ...
    tPoly,traceBack,'cont','hard');  % Decode data

Compute System BER

The delay introduced by the transmit and receive RRC filters is already accounted for in the
recovered data, but the decoder delay is not accounted for yet. The continuous operation mode of the
Viterbi decoder incurs a delay with a duration in bits equal to the traceback length, traceBack,
times the number of input streams at the encoder. For the 2/3 code rate used in this example, the
encoder has two input streams, so the delay is 2×traceBack bits. As a result, the first
2×traceBack bits in the decoded vector, dataOut, are zeros. When computing the BER, discard the
first 2×traceBack bits in dataOut and the last 2×traceBack bits in the original vector, dataIn.

Use the biterr function to compute the number of errors and the BER by comparing dataIn and
dataOut. For the same Eb/N0 of 10 dB, less errors occur when FEC is included in the processing
chain.

decDelay = 2*traceBack;              % Decoder delay, in bits
[numErrors,ber] = ...
   biterr(dataIn(1:end - decDelay),dataOut(decDelay + 1:end));       
fprintf('\nThe bit error rate is %5.2e, based on %d errors.\n', ...
    ber,numErrors)

The bit error rate is 4.30e-05, based on 43 errors.

More About Delays

The decoding operation in this example incurs a delay that causes the output of the decoder to lag
the input. Timing information does not appear explicitly in the example, and the length of the delay
depends on the specific operations being performed. Delays occur in various communications system
operations, including convolutional decoding, convolutional interleaving and deinterleaving,
equalization, and filtering. To find out the duration of the delay caused by specific functions or
operations, see the specific documentation for those functions or operations. For more information on
delays, see “Delays of Convolutional Interleavers” and “Fading Channels”.

See Also

Related Examples
• “Compute BER for QAM System with AWGN Using MATLAB” on page 2-7

 Use Forward Error Correction on 16-QAM Signal

2-23



OFDM Modulation Using MATLAB
Orthogonal Frequency Division Multiplexing (OFDM) is the multicarrier digital modulation technique
used by modern wireless communications systems such as 5G and LTE cellular, and WiFi. The
advantages of OFDM over other techniques, such as single carrier QAM, include support of higher
data rates with a simpler receiver design. Specifically, the use of OFDM with a cyclic prefix (CP)
enables fast Fourier transform based (FFT-based) equalization and synchronization, which simplifies
the reception as compared to techniques used to receive comparable data rates in single carrier
QAM. For a conceptual explanation of OFDM, see What Is OFDM? - MATLAB & Simulink. This set of
examples uses the fft and ifft functions to demonstrate transmission and reception of OFDM
signals.

• “Introduction to OFDM” on page 2-26
• “Basic OFDM with No Cyclic Prefix” on page 2-31
• “Equalization, Convolution, and Cyclic Prefix Addition” on page 2-33
• “OFDM and Equalization with Prepended Cyclic Prefix” on page 2-37
• “OFDM with FFT Based Oversampling” on page 2-39

Communications Toolbox and the wireless standards-based toolboxes provide customized OFDM
functions and examples that support generating basic OFDM systems and OFDM systems compliant
with those standards-based protocols.

• Communications Toolbox includes the ofdmmod and ofdmdemod functions to provide general
OFDM functionality, such as CP addition, and null and pilot subcarrier insertion. The
comm.OFDMModulator and comm.OFDMDemodulator System objects also enable applying
windowing to OFDM transmissions.

• 5G Toolbox™ includes the nrOFDMModulate and nrOFDMDemodulate functions to work with 5G
OFDM waveforms.

• LTE Toolbox™ includes the lteOFDMModulate and lteOFDMDemodulate functions to work with
LTE OFDM waveforms.

• WLAN Toolbox™ includes the wlanWaveformGenerator function to generate WLAN OFDM
waveforms.

• The Wireless Waveform Generator app offers a convenient interface to configure and generate
basic OFDM waveforms and OFDM waveforms adhering to these standards. The app also enables
you to output the associated OFDM waveform generation code to use in your simulation.

For a sampling of examples that use OFDM features in the wireless toolbox products, see:

• “QPSK and OFDM with MATLAB System Objects” on page 2-42
• “NR PDSCH Throughput” (5G Toolbox)
• “Simulate Propagation Channels” (LTE Toolbox)
• “802.11 Dynamic Rate Control Simulation” (WLAN Toolbox)

See Also
Functions
fft | ifft | ofdmmod | ofdmdemod | nrOFDMModulate | nrOFDMDemodulate | lteOFDMModulate |
lteOFDMDemodulate | wlanWaveformGenerator
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Apps
Wireless Waveform Generator

Related Examples
• “QPSK and OFDM with MATLAB System Objects” on page 2-42

External Websites
• What Is OFDM? - MATLAB & Simulink
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Introduction to OFDM

Orthogonal Frequency Division Multiplexing (OFDM) enables high data rate transmissions by
dividing modulated high bandwidth signal carriers onto many modulated narrowband subcarriers.
For OFDM transmissions, the use of narrowband subcarriers reduces sensitive to frequency selective
fading. Many of the latest wireless and telecommunications standards use the multicarrier OFDM
modulation format. Support of high data rates in single-carrier systems requires a wide bandwidth
carrier, and consequently short symbol durations. Filtering a wide bandwidth carrier through a
frequency selective multipath channel severely degrades the signal because the channel impulse
response spans multiple symbols in time and makes the signal vulnerable to intersymbol interference
(ISI).

These time domain and frequency domain plots show a low-rate signal, a high-rate signal, and a
frequency selective multipath channel response. The time domain plot shows the channel impulse
response is easily contained in one symbol of the low-rate signal, but it extends across multiple
symbols of the high-rate signal. The frequency domain plot shows that the channel magnitude is very
flat across the passband of the low-rate signal, but varies considerably across the passband of the
high-rate signal and causes ISI.

sa = helperPlotMultipath;
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To avoid ISI while transmitting many parallel low bandwidth signals, the individual subcarriers must
be orthogonal to each other. Avoiding ISI by transmitting many orthogonal low bandwidth subcarriers
motivates OFDM. An OFDM modulator converts a high-rate serial stream of symbols into many
parallel low-rate streams. Each orthogonal low-rate stream encounters a relatively flat channel with
minimal ISI, and can be easily equalized.

To demonstrate, consider a pulse of duration Tsym = 0 . 25 sec, a symbol data rate
Rsym = 1 / Tsym = 8 Hz, and additional pulses translated in frequency by Rsym, 2Rsym, and 3Rsym. The
frequency-translated pulses are called subcarriers. These plots display the subcarriers in the time
and frequency domains.

helperPlotOFDM
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The frequency domain plot shows the orthogonal frequency translated pulses with spectral peaks of
each subcarrier occurring at the zero crossings of all the other pulses.

An OFDM modulator sums all these subcarriers together to form its output signal. Here, the
subcarriers are baseband modulated using the QAM-method. Mathematically, the sampled modulator
output signal s k  is given by

s k = ∑
m = 0

N − 1
am, n e j2πmRsymk

Tsym
N ,

where

• am, n is a QAM-modulated symbol of the mth subcarrier in the nth OFDM time symbol
• Rsym is the symbol rate of each of the low-rate QAM streams
• Tsym = 1 / Rsym

• Nis the number of subcarriers, or low-rate QAM streams

This equation simplifies to

s k = ∑
m = 0

N − 1
am, n e j2π m k

N ,

which is a scaled version of the inverse discrete Fourier transform (IDFT) of the QAM symbol stream
am, n.
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See Also
Functions
fft | ifft | ofdmmod | ofdmdemod | nrOFDMModulate | nrOFDMDemodulate | lteOFDMModulate |
lteOFDMDemodulate | wlanWaveformGenerator

Apps
Wireless Waveform Generator

Related Examples
• “OFDM Modulation Using MATLAB” on page 2-24

External Websites
• What Is OFDM? - MATLAB & Simulink
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Basic OFDM with No Cyclic Prefix

OFDM simultaneously transmits closely spaced orthogonal subcarrier signals of overlapping
sinusoids. Transmission data is first coded and modulated, typically into QAM symbols. These symbols
are loaded into equally spaced frequency bins and then an inverse fast Fourier transform (IFFT) is
applied to transform the signal into orthogonal overlapping sinusoids (subcarriers) in the time
domain. Because the individual subcarriers are narrowband and experience flat fading, the receiver
side equalization requires just one tap per subcarrier.

Create a simple OFDM system, using the single-carrier 16QAM signal as the OFDM modulator input.
A stem plot shows that all frequency bins contain data.

bps = 4;    % Bits per symbol
M = 2^bps;  % 16QAM
nFFT = 128; % Number of FFT bins

txsymbols = randi([0 M-1],nFFT,1);
txgrid = qammod(txsymbols,M,UnitAveragePower=true);
txout = ifft(txgrid,nFFT);
stem(1:nFFT,real(txout))

Filter the transmission data through an AWGN channel with minimal noise. OFDM reception reverses
the transmission processing. Apply an FFT and QAM demodulation, and then confirm that the
received symbols match the transmitted symbols.
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rxin = awgn(txout,40);
rxgrid = fft(rxin,nFFT);
rxsymbols = qamdemod(rxgrid,M,UnitAveragePower=true);
if isequal(txsymbols,rxsymbols)
    disp("Recovered symbols match the transmitted symbols.")
else
    disp("Recovered symbols do not match transmitted symbols.")
end

Recovered symbols match the transmitted symbols.

All bins of the IFFT are filled with data for this transmission. In practical systems, edge bins are often
left empty to serve as guard bands, and some bins can be used to send specific pilot signals. The
combination of guard band and pilot signals helps with synchronization and equalization.

See Also
Functions
fft | ifft

Related Examples
• “OFDM Modulation Using MATLAB” on page 2-24

External Websites
• What Is OFDM? - MATLAB & Simulink
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Equalization, Convolution, and Cyclic Prefix Addition

This example introduces frequency domain equalization and shows how to convert circular
convolution to linear convolution. When considering a linear channel model, the received signal is the
convolution of the transmitted signal with the channel impulse response. In the frequency domain,
the received signal Y f  is the linear convolution of the transmitted signal U f  with the channel
impulse response H f :

Y f = H f ⋅U f

OFDM receivers use frequency domain equalization to recover the original transmitted signal, so
that:

U f = Y f
H f

FFT processing yields the circular convolution of u with h. For the circular convolution of u and h to
be equivalent to the linear convolution, u and h must be padded with zeros to a length of at least
(length(u) + length(h) - 1) before you take the discreet Fourier transform (DFT). After you
invert the product of the DFTs, retain only the first N + L - 1 elements. For an example that
demonstrates this process, see the “Linear and Circular Convolution” topic.

Define a short input signal, u1, and channel impulse response, h. The input signal must be longer
than the channel impulse response. Display a stem plot of the signals.

u1 = 1:8; 
h = [0.4 1 0.4];

figure
subplot(2,1,1)
stem(u1);
axis([0 10 0 10])
title("Input signal")
subplot(2,1,2)
stem(h);
axis([0 10 0 2])
title("Channel impulse response")
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Compare the circular and linear convolution of u1 with h. Perform linear and circular convolution by
using the conv and cconv functions, respectively. The smearing effects due to the nonideal channel
cause the linear and circular convolution to yield different results at some points. A cyclic prefix (CP)
enables effective use of OFDM in a nonideal channel with unknown propagation delay.

N = length(u1);
yl1 = conv(u1,h);
yc1 = cconv(u1,h,N);
figure;
stem(yl1,"x")
hold on;
stem(yc1,"o")
title(["Convolution Results - N=",int2str(N)])
legend ("Linear","Circular","Location","northwest")
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Add Cyclic Prefix (CP)

For OFDM processing, the necessary padding for the circular convolution is provided by adding a CP
rather than zero-padding the signals. Adding a CP that repeats the end samples of the symbol
enables:

• Modeling of the linear convolution of a frequency-selective multipath channel as circular
convolution

• Use of an FFT to compute the convolution
• Simple frequency domain processing for channel estimation, equalization, and synchronization
• Repeated samples to be used in forward error correction schemes

L = length(h);      % Length of channel
N = length(u1);     % Length of input signal
ucp = u1(N-L+1:N);  % Use last samples of input signal as the CP
u2 = [ucp u1];      % Prepend the CP to the input signal
yl2 = conv(u2,h);   % Convolution of input+CP and channel
yl2 = yl2(L+1:end); % Remove CP to compare signals

figure;
stem(yc1,"x")
hold on;
stem(yl2,"o")
title("Convolution Results with Cyclic Prefix")
legend ("Linear","Circular","Location","northwest")
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Compare the linear and circular convolution sequences.

if max(yc1 - yl2(1:N)) < 1e-8
    disp("Linear and circular convolution sequences match.")
else
    disp("Received symbols do not match transmitted symbols.")
end

Linear and circular convolution sequences match.

See Also
Functions
conv | cconv

Related Examples
• “OFDM Modulation Using MATLAB” on page 2-24
• “Linear and Circular Convolution”

External Websites
• What Is OFDM? - MATLAB & Simulink
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OFDM and Equalization with Prepended Cyclic Prefix

This example prepends a cyclic prefix to OFDM-modulated 16-QAM data. To be effective for
equalization the cyclic prefix (CP) length must equal or exceed the channel length.

Define variables for QAM and OFDM processing. Generate symbols, QAM-modulate, OFDM-modulate,
and then add a CP to the signal. Multiple OFDM symbols can be processed simultaneously and then
serialized.

bps = 4;    % Number of bits per symbol 
M = 2^bps;  % Modulation order
nFFT = 128; % Number of FFT bins
nCP = 8;    % CP length

txsymbols = randi([0 M-1],nFFT,1);
txgrid = qammod(txsymbols,M,UnitAveragePower=true);
txout = ifft(txgrid,nFFT);
% To process multiple symbols, vectorize the txout matrix
txout = txout(:);
txcp = txout(nFFT-nCP+1:nFFT);
txout = [txcp; txout];

Filter the transmission through a channel that adds noise, frequency dependency, and delay to the
received signal.

hchan = [0.4 1 0.4].';
rxin = awgn(txout,40);       % Add noise   
rxin = conv(rxin,hchan);     % Add frequency dependency
channelDelay = dsp.Delay(1); % Could use fractional delay
rxin = channelDelay(rxin);   % Add delay

Add a random offset less than the CP length. An offset setting of zero models perfect synchronization
between transmitted and received signals. Any timing offset less than the CP length can be
compensated by equalization via an additional linear phase.

offset = randi(nCP) - 1; % random offset less than length of CP
% Remove CP and synchronize the received signal
rxsync = rxin(nCP+1+channelDelay.Length-offset:end);
rxgrid = fft(rxsync(1:nFFT),nFFT);

Practical systems require estimation of the channel as part of the signal recovery process. The
combination of OFDM and a CP simplifies equalization to a complex scalar for each frequency bin. As
long as the latency falls within the length of the CP, synchronization is accomplished by the channel
estimator. A control here allows you to experiment by disabling the equalization at receiver front end.
Compare the transmitted signal with the receiver output.

useEqualizer = ;
if useEqualizer
    hfchan = fft(hchan,nFFT);
    % Linear phase term related to timing offset
    offsetf = exp(-1i * 2*pi*offset * (0:nFFT-1).'/nFFT);
    rxgrideq = rxgrid ./ (hfchan .* offsetf);
else % Without equalization errors occur
    rxgrideq = rxgrid;
end
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rxsymbols = qamdemod(rxgrideq,M,UnitAveragePower=true);
if max(txsymbols - rxsymbols) < 1e-8
    disp("Receiver output matches transmitter input.");
else
    disp("Received symbols do not match transmitted symbols.")
end

Receiver output matches transmitter input.

See Also
Functions
conv | fft | ifft

Related Examples
• “OFDM Modulation Using MATLAB” on page 2-24

External Websites
• What Is OFDM? - MATLAB & Simulink
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OFDM with FFT Based Oversampling

This example modifies an OFDM+CP signal to efficiently output an oversampled waveform from the
OFDM modulator. Configure the simple case with the sample rate related to subcarrier spacing and
FFT length.

k = 4;       % Number of bits per symbol 
M = 2^k;     % Modulation order
nFFT = 128;  % Number of FFT bins
cplen = 8;   % CP length
txsymbols = randi([0 M-1],nFFT,1);
txgrid = qammod(txsymbols,M,UnitAveragePower=true);
txout = ifft(txgrid,nFFT);
txout = txout(:); % Vectorize matrix if processing multiple symbols
txcp = txout(nFFT-cplen+1:nFFT);
txout = [txcp; txout];

scs = 20e3;        % Subcarrier spacing in Hz
Fs = scs * nFFT/2; % Sampling rate (1.28e6 Hz)
Ts = 1 / Fs;       % Sample duration in seconds  

Tend = Ts * (length(txout)-1);
subplot(211)
hold off
plot(0:Ts:Tend,real(txout),"*")
title("Real component of transmitter output")
subplot(212)
hold off
plot(0:Ts:Tend,imag(txout),"*")
title("Imaginary component of transmitter output")

Define an FFT length longer than nFFT to cause oversampling in time domain. To aid comparison
later, insert zeros into the middle of txgrid to maintain correspondence between bin centers for the
original and upsampled signals. A control here allows you to adjust the integer oversampling rate
used by the OFDM modulator output and demodulator input.

upFactor = ;
nFFTUp  = upFactor * nFFT;
fftgrid = [txgrid(1:nFFT/2); ...
    zeros((upFactor-1)*nFFT,1); ...
    txgrid((nFFT/2+1):nFFT)];
% Each column of fftgrid is one OFDM symbol
txout = upFactor * ifft(fftgrid,nFFTUp);
% Vectorize the matrix to process multiple OFDM symbols
txout = txout(:);
cplenUp = cplen * upFactor;
txcp = txout(nFFTUp-cplenUp+1:nFFTUp);
txout = [txcp; txout];
Ts = 1 / (upFactor*Fs);
Tend = Ts * (length(txout)-1);
subplot(211)
hold on
plot(0:Ts:Tend,real(txout))
legend ("Original","Upsampled","Location","southeast")
subplot(212)
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hold on
plot(0:Ts:Tend,imag(txout))
legend ("Original","Upsampled","Location","southeast")

Filter the transmission through a channel that adds noise, frequency dependency, and delay to the
received signal.

hchan = [0.4 1 0.4].';
rxin = awgn(txout,40);       % Add noise   
rxin = conv(rxin,hchan);     % Add frequency dependency
channelDelay = dsp.Delay(1); % Could use fractional delay
rxin = channelDelay(rxin);   % Add delay

Add a random offset less than the CP length. An offset setting of zero models perfect synchronization
between transmitted and received signals. Any timing offset less than the CP length can be
compensated by equalization via an additional linear phase. To directly compare signals at different
rates, prior to the FFT processing, normalize the synchronized signal by the upsampling factor.

offset = (randi(cplenUp) - 1); % random offset less than length of CP
% Remove CP and synchronize the received signal
rxsync = rxin(cplenUp+1+channelDelay.Length-offset:end);

rxgrid = fft(rxsync(1:nFFTUp),nFFTUp)/upFactor;

Practical systems require estimation of the channel as part of the signal recovery process. The
combination of OFDM and a CP simplifies equalization to a complex scalar for each frequency bin. As
long as the latency falls within the length of the CP, synchronization is accomplished by the channel
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estimator. A control here allows you to experiment by disabling the equalization at the receiver front
end.

useEqualizer = ;
if useEqualizer
    hfchan = fft(hchan,nFFTUp);
    % Linear phase term related to timing offset
    offsetf = exp(-1i * 2*pi*offset * (0:nFFTUp-1).'/nFFTUp);
    rxgrideq = rxgrid ./ (hfchan .* offsetf);
else % Without equalization errors occur
    rxgrideq = rxgrid;
end
rxgridNoZeroPad = [rxgrideq(1:nFFT/2); ...
    rxgrideq((1+(upFactor-0.5)*nFFT):end)];
rxsymbols = qamdemod(rxgridNoZeroPad,M,UnitAveragePower=true);
if max(txsymbols - rxsymbols) < 1e-8
    disp("Oversampled receiver output matches transmitter input.");
else
    disp("Received symbols do not match transmitted symbols.")
end

Oversampled receiver output matches transmitter input.

See Also
Functions
conv | fft | ifft

Related Examples
• “OFDM Modulation Using MATLAB” on page 2-24

External Websites
• What Is OFDM? - MATLAB & Simulink
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QPSK and OFDM with MATLAB System Objects

This example shows how to simulate a basic communication system in which the signal is first QPSK
modulated and then subjected to Orthogonal Frequency Division Multiplexing. The signal is then
passed through an additive white Gaussian noise channel prior to being demultiplexed and
demodulated. Lastly, the number of bit errors are calculated. The example showcases the use of
MATLAB® System objects™.

Set the simulation parameters.

M = 4;                 % Modulation alphabet
k = log2(M);           % Bits/symbol
numSC = 128;           % Number of OFDM subcarriers
cpLen = 32;            % OFDM cyclic prefix length
maxBitErrors = 100;    % Maximum number of bit errors
maxNumBits = 1e7;      % Maximum number of bits transmitted

Construct System objects needed for the simulation: QPSK modulator, QPSK demodulator, OFDM
modulator, OFDM demodulator, AWGN channel, and an error rate calculator. Use name-value pairs to
set the object properties.

Set the QPSK modulator and demodulator so that they accept binary inputs.

qpskMod = comm.QPSKModulator('BitInput',true);
qpskDemod = comm.QPSKDemodulator('BitOutput',true);

Set the OFDM modulator and demodulator pair according to the simulation parameters.

ofdmMod = comm.OFDMModulator('FFTLength',numSC,'CyclicPrefixLength',cpLen);
ofdmDemod = comm.OFDMDemodulator('FFTLength',numSC,'CyclicPrefixLength',cpLen);

Set the NoiseMethod property of the AWGN channel object to Variance and define the
VarianceSource property so that the noise power can be set from an input port.

channel = comm.AWGNChannel('NoiseMethod','Variance', ...
    'VarianceSource','Input port');

Set the ResetInputPort property to true to enable the error rate calculator to be reset during the
simulation.

errorRate = comm.ErrorRate('ResetInputPort',true);

Use the info function of the ofdmMod object to determine the input and output dimensions of the
OFDM modulator.

ofdmDims = info(ofdmMod)

ofdmDims = struct with fields:
    DataInputSize: [117 1]
       OutputSize: [160 1]

Determine the number of data subcarriers from the ofdmDims structure variable.

numDC = ofdmDims.DataInputSize(1)

numDC = 117
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Determine the OFDM frame size (in bits) from the number of data subcarriers and the number of bits
per symbol.

frameSize = [k*numDC 1];

Set the SNR vector based on the desired Eb/No range, the number of bits per symbol, and the ratio of
the number of data subcarriers to the total number of subcarriers.

EbNoVec = (0:10)';
snrVec = EbNoVec + 10*log10(k) + 10*log10(numDC/numSC);

Initialize the BER and error statistics arrays.

berVec = zeros(length(EbNoVec),3);
errorStats = zeros(1,3);

Simulate the communication link over the range of Eb/No values. For each Eb/No value, the
simulation runs until either maxBitErrors are recorded or the total number of transmitted bits
exceeds maxNumBits.

for m = 1:length(EbNoVec)
    snr = snrVec(m);
    
    while errorStats(2) <= maxBitErrors && errorStats(3) <= maxNumBits
        dataIn = randi([0,1],frameSize);              % Generate binary data
        qpskTx = qpskMod(dataIn);                     % Apply QPSK modulation
        txSig = ofdmMod(qpskTx);                      % Apply OFDM modulation
        powerDB = 10*log10(var(txSig));               % Calculate Tx signal power
        noiseVar = 10.^(0.1*(powerDB-snr));           % Calculate the noise variance
        rxSig = channel(txSig,noiseVar);              % Pass the signal through a noisy channel
        qpskRx = ofdmDemod(rxSig);                    % Apply OFDM demodulation
        dataOut = qpskDemod(qpskRx);                  % Apply QPSK demodulation
        errorStats = errorRate(dataIn,dataOut,0);     % Collect error statistics
    end
    
    berVec(m,:) = errorStats;                         % Save BER data
    errorStats = errorRate(dataIn,dataOut,1);         % Reset the error rate calculator
end

Use the berawgn function to determine the theoretical BER for a QPSK system.

berTheory = berawgn(EbNoVec,'psk',M,'nondiff');

Plot the theoretical and simulated data on the same graph to compare results.

figure
semilogy(EbNoVec,berVec(:,1),'*')
hold on
semilogy(EbNoVec,berTheory)
legend('Simulation','Theory','Location','Best')
xlabel('Eb/No (dB)')
ylabel('Bit Error Rate')
grid on
hold off
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Observe that there is good agreement between the simulated and theoretical data.
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Accelerating BER Simulations Using the Parallel Computing
Toolbox

This example uses Parallel Computing Toolbox™ to accelerate a simple, QPSK bit error rate (BER)
simulation. The system consists of a QPSK modulator, a QPSK demodulator, an AWGN channel, and a
bit error rate counter.

Set the simulation parameters.

EbNoVec = 5:8;     % Eb/No values in dB
totalErrors = 200; % Number of bit errors needed for each Eb/No value
totalBits = 1e7;   % Total number of bits transmitted for each Eb/No value

Allocate memory to the arrays used to store the data generated by the function,
helper_qpsk_sim_with_awgn.

[numErrors, numBits] = deal(zeros(length(EbNoVec),1));

Run the simulation and determine the execution time. Only one processor will be used to determine
baseline performance. Accordingly, observe that the normal for-loop is employed.

tic
for idx = 1:length(EbNoVec)
    errorStats = helper_qpsk_sim_with_awgn(EbNoVec,idx, ...
        totalErrors,totalBits);
    numErrors(idx) = errorStats(idx,2);
    numBits(idx) = errorStats(idx,3);
end
simBaselineTime = toc;

Calculate the BER.

ber1 = numErrors ./ numBits;

Rerun the simulation for the case in which Parallel Computing Toolbox is available. Create a pool of
workers.

pool = gcp;
assert(~isempty(pool), ['Cannot create parallel pool. '...
  'Try creating the pool manually using ''parpool'' command.'])

Determine the number of available workers from the NumWorkers property of pool. The simulation
runs the range of  values over each worker rather than assigning a single  point to each
worker as the former method provides the biggest performance improvement.

numWorkers = pool.NumWorkers;

Determine the length of EbNoVec for use in the nested parfor loop. For proper variable
classification, the range of a for-loop nested in a parfor must be defined by constant numbers or
variables.

lenEbNoVec = length(EbNoVec);

Allocate memory to the arrays used to store the data generated by the function,
helper_qpsk_sim_with_awgn.
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[numErrors,numBits] = deal(zeros(length(EbNoVec),numWorkers));

Run the simulation and determine the execution time.

tic
parfor n = 1:numWorkers
    for idx = 1:lenEbNoVec
        errorStats = helper_qpsk_sim_with_awgn(EbNoVec,idx, ...
            totalErrors/numWorkers,totalBits/numWorkers);
        numErrors(idx,n) = errorStats(idx,2);
        numBits(idx,n) = errorStats(idx,3);
    end
end
simParallelTime = toc;

Calculate the BER. In this case, the results from multiple processors must be combined to generate
the aggregate BER.

ber2 = sum(numErrors,2) ./ sum(numBits,2);

Compare the BER values to verify that the same results are obtained independent of the number of
workers.

semilogy(EbNoVec',ber1,'-*',EbNoVec',ber2,'-^')
legend('Single Processor','Multiple Processors','location','best')
xlabel('Eb/No (dB)')
ylabel('BER')
grid
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You can see that the BER curves are essentially the same with any variance being due to differing
random number seeds.

Compare the execution times for each method.

fprintf(['\nSimulation time = %4.1f sec for one worker\n', ...
    'Simulation time = %4.1f sec for multiple workers\n'], ...
    simBaselineTime,simParallelTime)
fprintf('Number of processors for parfor = %d\n', numWorkers)

Simulation time = 24.6 sec for one worker
Simulation time =  6.1 sec for multiple workers
Number of processors for parfor = 6
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Iterative Design Workflow for Communication Systems
In this section...
“Simulate a basic communications system” on page 2-48
“Introduce convolutional coding and hard-decision Viterbi decoding” on page 2-52
“Improve results using soft-decision decoding” on page 2-55
“Use turbo coding to improve BER performance” on page 2-58
“Apply a Rayleigh channel model” on page 2-60
“Use OFDM-based equalization to correct multipath fading” on page 2-62
“Use multiple antennas to further improve system performance” on page 2-64
“Accelerate the simulation using MATLAB Coder” on page 2-66

This example illustrates a design workflow that represents the iterative steps for creating a wireless
communications system with the Communications Toolbox. Because Communications Toolbox
supports both MATLAB and Simulink, this example showcases design paths using MATLAB code and
Simulink blocks. As you progress through the workflow, you may follow the design path for MATLAB,
for Simulink, or for both products.

The workflow begins with a simple communications system and performs bit error rate (BER)
simulations to gauge system performance. BER simulations are based on simulating a
communications system with a given signal-to-noise ratio (Eb/No), and then calculating the
corresponding bit error rate measurement to determine the number of errors in the transmitted
signal. The lower the BER measurement at a given signal-to-noise ratio, the better the system
performance.

This workflow starts with a simple communications system, and iteratively adds the algorithmic
components necessary to build a more complicated system. These additional components include:

• Convolutional Encoding and Viterbi Decoding
• Turbo Coding
• Multipath Fading Channels
• OFDM-Based Transmission
• Multiple-Antenna Techniques

As you add components to the system, the workflow includes bit error calculations so that you can
progressively examine system performance. For some components, theoretical or performance
benchmarks are available. In these cases, the workflow shows both the theoretical and measured
performance metric.

Simulate a basic communications system
This workflow starts with a simple QPSK modulator system that transmits a signal through an AWGN
channel and calculates the bit error rate to evaluate system performance.

In MATLAB

1 Change directories to the this MATLAB folder:

matlab\help\toolbox\comm\examples
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2 Type edit doc_design_iteration_basic_m at the MATLAB command line.

MATLAB opens a file you will use in this example. Notice that this code employs four System
objects from Communications Toolbox: comm.PSKModulator, comm.AWGN,
comm.PSKDemodulator, and comm.ErrorRate. For each EbNo value, the code runs in a while
loop until either the specified number of errors are observed or the maximum number of bits are
processed. Notice that the code executes each System object™ by calling the step method. The
code outputs BER, defined as the ratio of the observed number of errors per number of bits
processed. The subsequent MATLAB functions that this example uses have a similar structure.

3 Type bertool at the MATLAB command line to open the Bit Error Rate Analysis app.
4 After the app opens, click the Theoretical tab.

The first plot that you will generate is a theoretical curve.
5 Enter 0:9 for the EbNo range.

EbNo is the ratio of noise power energy per bit. The higher the value, the better the system
performance. This simulation will run using different values for the ratio, between 0 and 9.

6 Select 4 for Modulation order.

The modulation order defines the number of symbols to transmit. Here, each symbol is made up
of two bits.

7 Click Plot.

The app generates the theoretical BER curve.
8 Click the Monte Carlo tab.

Monte Carlo techniques use random sampling to compute data. Therefore, the plot for the
second simulation uses random sampling.

9 Enter 0:9 for the EbNo range.
10 Enter 200 for the Number of errors.

The Number of errors is one of the stop criteria for the simulation.
11 Enter 1e7 for the Number of bits.

The Number of bits is also a stop criteria for the simulation. The simulation stops when it
transmits the number of bits you specify for this parameter. In this example, the simulation either
stops when it transmits 10 million bits or when it detects 200 errors.

12 Click the Browse button.
13 Navigate to matlab/help/toolbox/comm/examples, and select

doc_design_iteration_basic_m.m.
14 Click Run.

The app runs the simulation and generates simulation points along the BER curve. Compare the
simulation BER curve with the theoretical BER curve.
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Every function with two output variables and these three input variables can be called using the
Bit Error Rate Analysis app.

• The first variable is a scalar number that corresponds to EbNo.
• The second variable is the stopping criterion based on the maximum number of errors to

observe before stopping the simulation.
• The third variable is the stop criterion based on the maximum number of bits to process

before observe before stopping the simulation.

In Simulink

1 Type bertool at the MATLAB command line to open the Bit Error Rate Analysisapp.
2 After the app opens, click the Theoretical tab.
3 Enter 0:9 for the EbNo range.

EbNo is the ratio of noise power energy per bit. The higher the value, the better the system
performance. This simulation will run using different values for the ratio, between 0 and 9.

4 Select 4 for Modulation order.
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The modulation order defines the number of symbols to transmit. Here, each symbol is made up
of two bits.

5 Click Plot.

The app generates the theoretical BER curve.
6 Click the Monte Carlo tab.
7 Enter 0:9 or the EbNo range.
8 Enter ber for the BER variable name.
9 Enter 200 for the Number of errors.

The Number of errors is one of the stop criteria for the simulation. The simulation stops when it
reaches either the Number of errors or the Number of bits.

10 Enter 1e7 for the Number of bits.

The Number of bits is also a stop criteria for the simulation. The simulation stops when it
transmits the number of bits you specify for this parameter or when it reaches the Number of
errors. In this example, the simulation either stops when it transmits 10 million bits or when it
detects 200 errors.

11 Click the Browse button, select All Files for the Files of type field.
12 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_basic.slx and click Run.

The Bit Error Rate Analysis app runs the simulation and generates simulated points along the
BER curve. Compare the simulation BER curve with the theoretical BER curve.
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Introduce convolutional coding and hard-decision Viterbi decoding
Modify the basic communications model to include forward error correction. Adding forward error
correction to the basic communications model improves system performance. In forward error
correction, the transmitter sends redundant bits, along with the message bits, through a wireless
channel. When the receiver accepts the transmitted signal, it uses the redundancy bits to detect and
correct errors that the channel may have introduced.

This section of the design workflow adds a convolutional encoder and a Viterbi decoder to the
communication system. This communications system uses hard-decision Viterbi decoding. In hard-
decision Viterbi decoding, the demodulator maps the received signal to bits, and then passes the bits
to the Viterbi decoder for error correction.

In MATLAB

In this iteration of the design workflow, the MATLAB file you use starts from where the one in the
previous section ended. This file adds two additional System objects to the communications system,
comm.ConvolutionalEncoder and comm.ViterbiDecoder. The overall structure of the code
doesn't change; it simply contains additional functionality.
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1 Access the Bit Error Rate Analysis app.
2 Clear the Plot check boxes for the two plots the app generated in the previous step.
3 Click Theoretical.
4 Enter 0:7 for the EbNo range.
5 Select Convolutional for the Channel Coding.
6 Select Hard for the Decision method.

This example uses hard-decision Viterbi decoding. The demodulator maps the received signal to
bits, and then passes the bits to the Viterbi decoder for error correction.

7 Click Plot.

The app generates the theoretical BER curve.
8 Click Monte Carlo.
9 Enter 0:7 for the EbNo range.
10 Enter 200 for the Number of errors.
11 Enter 1e7 for the Number of bits.
12 Click the Browse button.
13 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_m.m and click Open.
14 Click Run.

The app runs the simulation and generates simulated points along the BER curve. Compare the
simulation BER curve with the theoretical BER curve.
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In Simulink

1 Access the Bit Error Rate Analysis app.
2 Click the Theoretical tab.
3 Enter 0:7 for the EbNo range.
4 Select Convolutional for the Channel Coding.
5 Select Hard for the Decision method.

This example uses hard-decision Viterbi decoding. The demodulator maps the received signal to
bits, and then passes the bits to the Viterbi decoder for error correction.

6 Click Plot.

The app generates the theoretical BER curve.
7 Click the Monte Carlo tab.
8 Enter 0:7 for the EbNo range.
9 Enter 200 for the Number of errors.
10 Enter 1e7 for the Number of bits.
11 Click the Browse button, select All Files for the Files of type field.
12 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi.slx and click Open.
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13 click Run. The app runs the simulation and generates simulated points along the BER curve.
Compare the simulation BER curve with the theoretical BER curve.

Improve results using soft-decision decoding
Use soft-decision decoding to improve BER performance. The previous section of this workflow uses
hard-decision demodulation and hard-decision Viterbi decoding – processes that map symbols to bits.
This section of the workflow uses soft-decision demodulation and soft-decision Viterbi decoding. In
soft-decision demodulation, the received symbols are not mapped to bits. Instead, the symbols are
mapped to log-likelihood ratios. When the Viterbi decoder processes log-likelihood ratios (LLR), the
BER performance of the system improves.

In MATLAB

1 Access the Bit Error Rate Analysis app.
2 Clear the Plot check boxes for the two plots the app generated in the previous step.
3 Click Theoretical.
4 Enter 0:5 for the EbNo range.
5 Select Soft for the Decision method.
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This example uses soft-decision Viterbi decoding. The demodulator maps the received signal to
log likelihood ratios, improving BER performance results.

6 Click Plot.

The app generates the theoretical BER curve.
7 Click Monte Carlo.
8 Enter 0:5 for the EbNo range.
9 Enter 200 for the Number of errors.
10 Enter 1e7 for the Number of bits.
11 Click the Browse button.
12 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_soft_m.m and click Run.

The app runs the simulation and generates the actual simulated points along the BER curve.
Compare the simulation BER curve with the theoretical BER curve.
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In Simulink

1 Access the Bit Error Rate Analysis app.
2 Clear the Plot check boxes for the two plots the app generated in the previous step.
3 Click Theoretical.
4 Enter 0:5for the EbNo range.
5 Select Soft for the Decision method.

This example uses soft-decision Viterbi decoding. The demodulator maps the received signal to
log likelihood ratios, improving BER performance results.

6 Click Plot.

The app generates the theoretical BER curve.
7 Click Monte Carlo.
8 Enter 0:5 for the EbNo range.
9 Enter 200 for the Number of errors.
10 Enter 1e7 for the Number of bits.
11 Click the Browse button, select All Files for the Files of type field.
12 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_soft.slx and click Run.
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When you plot the soft-decision theoretical curve, you will observe BER curve improvements of about
2 dB relative to the hard-decision decoding. Notice that the simulation results also reflects a similar
BER improvement.

Use turbo coding to improve BER performance
Turbo codes substantially improve BER performance over soft-decision Viterbi decoding. Turbo
coding uses two convolutional encoders in parallel at the transmitter and two a posteriori probability
(APP) decoders in series at the receiver. This example uses a rate 1/3 turbo coder. For each input bit,
the output has 1 systematic bit and 2 parity bits, for a total of three bits. Turbo coders achieve BER
performances at much lower SNR values than convolutional encoders. As a result, this iteration uses
a lower range of EbNo values than the previous section.

In MATLAB

1 Access the Bit Error Rate Analysis app.
2 Click the Monte Carlo tab.
3 Enter 0:0.2:1.2 for the EbNo range.
4 Enter 200 for the Number of errors.
5 Enter 1e7 for the Number of bits.
6 Click the Browse button.
7 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_zTurbo_soft_m.m and click Run.

The app runs the simulation and generates simulated points along the BER curve.
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In Simulink

1 Access the Bit Error Rate Analysis app.
2 Clear the Plot check boxes for the last plot the app generated in the previous section.
3 Click the Monte Carlo tab.
4 Enter 0:0.2:1.2 for the EbNo range.
5 Enter 200 for the Number of errors.
6 Enter 1e7 for the Number of bits.
7 Click the Browse button, select All Files for the Files of type field.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_turbo.slx and click Run.

The app runs the simulation and generates simulated points along the BER curve.
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Apply a Rayleigh channel model
The previous design iterations model narrowband communications systems that can be adequately
represented using an AWGN channel. However, high data rate communications systems require a
wideband channel. Wideband communications channels are highly susceptible to the effects of
multipath propagation, which introduces intersymbol interference (ISI). Therefore, you must model
wideband channels as multipath fading channels. This iteration of the design workflow uses a
multipath fading Rayleigh channel, which assumes no direct line-of-sight between the transmitter and
receiver.

In MATLAB

1 Access the Bit Error Rate Analysis app.
2 Clear the Plot check box for the plot the app generated in the previous step.
3 Click Monte Carlo.
4 Enter 0:9 for the EbNo range.
5 Enter 200 for the Number of errors.
6 Enter 1e7 for the Number of bits.
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7 Click the Browse button.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_rayleigh_m.m and click Run.

The app runs the simulation and generates simulated points along the BER curve. Compare the
simulation BER curve with the theoretical BER curve.

In the presence of multipath fading, the BER performance reduces to that of a binary channel
with a consistent value of one-half. To correct the effect of multipath fading, you must add
equalization to the communications system.

In Simulink

1 Access the Bit Error Rate Analysis app.
2 Clear the Plot check box to clear the plot the app generated in the previous step.
3 Click Monte Carlo.
4 Enter 0:7 for the EbNo range.
5 Enter 200 for the Number of errors.
6 Enter 1e7 for the Number of bits.
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7 Click the Browse button, select All Files for the Files of type field.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_rayleigh.slx and click Run.

The app runs the simulation and generates simulated points along the BER curve. Compare the
simulation BER curve with the theoretical BER curve.

In the presence of multipath fading, the BER performance reduces to that of a binary channel
with a consistent value of one-half. To correct the effect of multipath fading, you must add
equalization to the communications system.

Use OFDM-based equalization to correct multipath fading
Use orthogonal frequency-division multiplexing (OFDM) to compensate for the multipath fading effect
introduced by the Rayleigh fading channel. OFDM transmission schemes provides an effective way to
perform frequency domain equalization. This design iteration introduces an OFDM transmitter, an
OFDM receiver, and a frequency domain equalizer to the communications system.
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In MATLAB

1 Access the Bit Error Rate Analysis app.
2 Clear the Plot check boxes for the simulation plot generated in the previous step.
3 Click the Monte Carlo tab.
4 Enter 0:9 for the EbNo range.
5 Enter 6000 for the Number of errors.
6 Enter 1e7 for the Number of bits.
7 Click the Browse button.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_Rayleigh_OFDM_m.m and click Run.

The app runs the simulation and generates simulated points along the BER curve.

In Simulink

1 Access the Bit Error Rate Analysis app.
2 Clear the Plot check boxes for the plots the app generated in the previous step.
3 Click the Monte Carlo tab.
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4 Enter 0:9 for the EbNo range.
5 Enter 6000 for the Number of errors.
6 Enter 5e7 for the Number of bits.
7 Click the Browse button, select All Files for the Files of type field.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_rayleigh_OFDM.slx and click Run.

The app runs the simulation and generates simulated points. Compare the simulation BER curve
with the theoretical BER curve.

Use multiple antennas to further improve system performance
Simultaneously transmitting copies of a signal using multiple antennas can significantly increase the
likelihood that the receiver correctly recovers the transmitted signal. This phenomenon is known as
transmit diversity. However, this performance improvement comes at the expense of introducing
additional computational complexity in the receiver.
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In MATLAB

1 Access the Bit Error Rate Analysis app.
2 Clear the Plot check box to clear the simulation plot generated in the previous step.
3 Click the Monte Carlo tab.
4 Enter 0:9 for the EbNo range.
5 Enter 1000 for the Number of errors.
6 Enter 1e7 for the Number of bits.
7 Click the Browse button.
8 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m.m and click Run.

The app runs the simulation and generates simulated points along the BER curve. Compare the
simulation BER curve with the theoretical BER curve.

In Simulink

1 Access the Bit Error Rate Analysis app.
2 Click the Monte Carlo tab.
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3 Enter 0:9 for the EbNo range.
4 Enter 700 for the Number of errors.
5 Enter 1e7 for the Number of bits.
6 Click the Browse button, select All Files for the Files of type field.
7 Navigate to matlab/help/toolbox/comm/examples, select

doc_design_iteration_viterbi_rayleigh_OFDM_MIMO.slx and click Run.

Accelerate the simulation using MATLAB Coder
All of the functions and System objects that this design iteration workflow uses support C code
generation. If you have a MATLAB Coder™ license, you can accelerate simulation speed by
generating a .mex file using the codegen command.

In MATLAB

1 Copy the doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m.m file to a folder that is not on
the MATLAB path. For example, C:\Temp.

2 Change your working directory to the folder you just created.
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3 Execute the following commands to set a numerical value for each of the input arguments in the
doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m function. For example:

EbNo=1;
MaxNumErrs=200;
MaxNumBits=1e7;

4 Execute the codegen command to generate the executable MATLAB file.

codegen -args {EbNo,MaxNumErrs,MaxNumBits}
doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m

5 The file extension of the MATLAB executable file that gets generated depends upon your
operating system. For example, on 64–bit Windows® the file extension will be .mexw64, and the
full file name will be doc_design_iteration_viterbi_rayleigh_OFDM_MIMO_m_mex.mexw64.

If you run the mex file you just generated in the app, you will obtain the simulation results more
quickly.

6 Access the Bit Error Rate Analysis app.
7 Click the Monte Carlo tab.
8 Enter 0:9 for the EbNo range.
9 Enter 700 for the Number of errors.
10 Enter 1e7 for the Number of bits.
11 Click the Browse button, and select All Files.

Navigate to folder you created in step 1 and click Run.

The app runs the simulation and generates simulated points along the BER curve. Compare the
simulation BER curve with the previous curve. Any variation in the BER curve of the mex file and
the MATLAB file from which it was generated is related to the seed of the random number
generator and is statistically insignificant. In this example, The app generates the curve much
more quickly when you use MATLAB Coder to generate C code. Notice that the app generates
similar BER results in about 1/4 of the time that it took for the original simulation took to
complete.
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Visualization and Measurements

• “Scatter Plot and Eye Diagram with MATLAB Functions” on page 3-2
• “ACPR and CCDF Measurements with MATLAB System Objects” on page 3-6

3



Scatter Plot and Eye Diagram with MATLAB Functions

This example shows how to visualize signal behavior through the use of eye diagrams and scatter
plots. The example uses a QPSK signal which is passed through a square-root raised cosine (RRC)
filter.

Scatter Plot

Set the RRC filter, modulation scheme, and plotting parameters.

span = 10;          % Filter span
rolloff = 0.2;      % Rolloff factor
sps = 8;            % Samples per symbol
M = 4;              % Modulation alphabet size
k = log2(M);        % Bits/symbol
phOffset = pi/4;    % Phase offset (radians)
n = 1;              % Plot every nth value of the signal
offset = 0;         % Plot every nth value of the signal, starting from offset+1

Create the filter coefficients using the rcosdesign function.

filtCoeff = rcosdesign(rolloff,span,sps);

Generate random symbols for an alphabet size of M.

rng default
data = randi([0 M-1],5000,1);

Apply QPSK modulation.

dataMod = pskmod(data,M,phOffset);

Filter the modulated data.

txSig = upfirdn(dataMod,filtCoeff,sps);

Calculate the SNR for an oversampled QPSK signal.

EbNo = 20;
snr = EbNo + 10*log10(k) - 10*log10(sps);

Add AWGN to the transmitted signal.

rxSig = awgn(txSig,snr,'measured');

Apply the RRC receive filter.

rxSigFilt = upfirdn(rxSig, filtCoeff,1,sps);

Demodulate the filtered signal.

dataOut = pskdemod(rxSigFilt,M,phOffset,'gray');

Use the scatterplot function to show scatter plots of the signal before and after filtering. You can
see that the receive filter improves performance as the constellation more closely matches the ideal
values. The first span symbols and the last span symbols represent the cumulative delay of the two
filtering operations and are removed from the two filtered signals before generating the scatter plots.
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h = scatterplot(sqrt(sps)*txSig(sps*span+1:end-sps*span),sps,offset);
hold on
scatterplot(rxSigFilt(span+1:end-span),n,offset,'bx',h)
scatterplot(dataMod,n,offset,'r+',h)
legend('Transmit Signal','Received Signal','Ideal','location','best')

Eye Diagram

Display 1000 points of the transmitted signal eye diagram over two symbol periods.

eyediagram(txSig(sps*span+1:sps*span+1000),2*sps)
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Display 1000 points of the received signal eye diagram.

eyediagram(rxSig(sps*span+1:sps*span+1000),2*sps)
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Observe that the received eye diagram begins to close due to the presence of AWGN. Moreover, the
filter has finite length which also contributes to the non-ideal behavior.

See Also
eyediagram | scatterplot

Related Examples
• “Scatter Plots and Constellation Diagrams”
• “ACPR and CCDF Measurements with MATLAB System Objects” on page 3-6
• “Measure Modulation Accuracy”
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ACPR and CCDF Measurements with MATLAB System Objects
In this section...
“ACPR Measurements” on page 3-6
“CCDF Measurements” on page 3-8

ACPR Measurements

This example shows how to measure the adjacent channel power ratio (ACPR) from a baseband, 50
kbps QPSK signal. ACPR is the ratio of signal power measured in an adjacent frequency band to the
power from the same signal measured in its main band. The number of samples per symbol is set to
four.

Set the samples per symbol (sps) and channel bandwidth (bw) parameters.

sps = 4;
bw = 50e3;

Generate 10,000 4-ary symbols for QSPK modulation.

data = randi([0 3],10000,1);

Construct a QPSK modulator and then modulate the input data.

qpskMod = comm.QPSKModulator;
x = qpskMod(data);

Apply rectangular pulse shaping to the modulated signal. This type of pulse shaping is typically not
done in practical system but is used here for illustrative purposes.

y = rectpulse(x,sps);

Construct an ACPR System object. The sample rate is the bandwidth multiplied by the number of
samples per symbol. The main channel is assumed to be at 0 while the adjacent channel offset is set
to 50 kHz (identical to the bandwidth of the main channel). Likewise, the measurement bandwidth of
the adjacent channel is set to be the same as the main channel. Lately, enable the main and adjacent
channel power output ports.

acpr = comm.ACPR('SampleRate',bw*sps,...
    'MainChannelFrequency',0,...
    'MainMeasurementBandwidth',bw,...
    'AdjacentChannelOffset',50e3,...
    'AdjacentMeasurementBandwidth',bw,...
    'MainChannelPowerOutputPort', true,...
    'AdjacentChannelPowerOutputPort',true);

Measure the ACPR, the main channel power, and the adjacent channel power of signal y.

[ACPRout,mainPower,adjPower] = acpr(y)

ACPRout = -9.3071

mainPower = 28.9389
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adjPower = 19.6318

Change the frequency offset to 75 kHz and determine the ACPR. Since the AdjacentChannelOffset
property is nontunable, you must first release acpr. Observe that the ACPR improves when the
channel offset is increased.

release(acpr)
acpr.AdjacentChannelOffset = 75e3;
ACPRout = acpr(y)

ACPRout = -13.1702

Release acpr and specify a 50 kHz adjacent channel offset.

release(acpr)
acpr.AdjacentChannelOffset = 50e3;

Create a raised cosine filter and filter the modulated signal.

txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol', sps);
z = txfilter(x);

Measure the ACPR for the filtered signal, z . You can see that the ACPR improves from -9.5 dB to
-17.7 dB when raised cosine pulses are used.

ACPRout = acpr(z)

ACPRout = -17.2245

Plot the adjacent channel power ratios for a range of adjacent channel offsets. Set the channel offsets
to range from 30 kHz to 70 kHz in 10 kHz steps. Recall that you must first release hACPR to change
the offset.

freqOffset = 1e3*(30:5:70);
release(acpr)
acpr.AdjacentChannelOffset = freqOffset;

Determine the ACPR values for the signals with rectangular and raised cosine pulse shapes.

ACPR1 = acpr(y);
ACPR2 = acpr(z);

Plot the adjacent channel power ratios.

plot(freqOffset/1000,ACPR1,'*-',freqOffset/1000, ACPR2,'o-')
xlabel('Adjacent Channel Offset (kHz)')
ylabel('ACPR (dB)')
legend('Rectangular','Raised Cosine','location','best')
grid
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CCDF Measurements

This example shows how to use the Complementary Cumulative Distribution Function (CCDF) System
object™ to measure the probability of a signal's instantaneous power being greater than a specified
level over its average power. Construct the comm.CCDF object, enable the PAPR output port, and set
the maximum signal power limit to 50 dBm.

ccdf = comm.CCDF('PAPROutputPort',true,'MaximumPowerLimit', 50);

Create an OFDM modulator having an FFT length of 256 and a cyclic prefix length of 32.

ofdmMod = comm.OFDMModulator('FFTLength',256,'CyclicPrefixLength',32);

Determine the input and output sizes of the OFDM modulator object using the info function of the
comm.OFDMModulator object.

ofdmDims = info(ofdmMod)

ofdmDims = struct with fields:
    DataInputSize: [245 1]
       OutputSize: [288 1]

ofdmInputSize = ofdmDims.DataInputSize;
ofdmOutputSize = ofdmDims.OutputSize;

Set the number of OFDM frames.

numFrames = 20;

Allocate memory for the signal arrays.

3 Visualization and Measurements
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qamSig = repmat(zeros(ofdmInputSize),numFrames,1);
ofdmSig = repmat(zeros(ofdmOutputSize),numFrames,1);

Generate the 64-QAM and OFDM signals for evaluation.

for k = 1:numFrames
    % Generate random data symbols
    data = randi([0 63],ofdmInputSize);
    % Apply 64-QAM modulation
    tmpQAM = qammod(data,64);
    % Apply OFDM modulation to the QAM-modulated signal
    tmpOFDM = ofdmMod(tmpQAM);
    % Save the signal data
    qamSig((1:ofdmInputSize)+(k-1)*ofdmInputSize(1)) = tmpQAM;
    ofdmSig((1:ofdmOutputSize)+(k-1)*ofdmOutputSize(1)) = tmpOFDM;
end

Determine the average signal power, the peak signal power, and the PAPR ratios for the two signals.
The two signals being evaluated must be the same length so the first 4000 symbols are evaluated.

[Fy,Fx,PAPR] = ccdf([qamSig(1:4000),ofdmSig(1:4000)]);

Plot the CCDF data. Observe that the likelihood of the power of the OFDM modulated signal being
more than 3 dB above its average power level is much higher than for the QAM modulated signal.

plot(ccdf)
legend('QAM','OFDM','location','best')
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Compare the PAPR values for the QAM modulated and OFDM modulated signals.

fprintf('\nPAPR for 64-QAM = %5.2f dB\nPAPR for OFDM = %5.2f dB\n',...
    PAPR(1), PAPR(2))

PAPR for 64-QAM =  3.65 dB
PAPR for OFDM =  9.44 dB

You can see that by applying OFDM modulation to a 64-QAM modulated signal, the PAPR increases by
5.8 dB. This means that if 30 dBm transmit power is needed to close a 64-QAM link, the power
amplifier needs to have a maximum power of 33.7 dBm to ensure linear operation. If the same signal
were then OFDM modulated, a 39.5 dBm power amplifier is required.

See Also
comm.ACPR | comm.CCDF

Related Examples
• “Adjacent Channel Power Ratio (ACPR)”
• “Complementary Cumulative Distribution Function CCDF”
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